To our webshop

Elfa werkt mee aan soldaat van de toekomst

Op 13 en 14 januari was de soldaat van de toekomst het gespreksonderwerp bij het Fight Light Symposium van Defensie. Elfa was samen met Battery Safety Solutions uitgenodigd om te vertellen over de laatste ontwikkelingen op het gebied van accu- en batterijtechnologie en de bijbehorende veiligheid.

Overbelaste soldaat

Soldaten krijgen tegenwoordig steeds meer technische snufjes mee, waardoor het gewicht stijgt dat door de soldaat meegedragen moet worden. Het gevolg is een overbelaste soldaat, wat een negatief effect heeft op onder andere zijn wendbaarheid en overlevingskansen.

 

Omdat Elfa naast groothandel ook een kenniscentrum is met meer dan 100 jaar ervaring, waren wij uitgenodigd om te vertellen over de ontwikkelingen van ‘smart batteries’. Elfa beschikt over een lichtere ‘smart’ backpack-batterij die (nagenoeg) alle apparaten op het lichaam van een soldaat van energie kan voorzien. Deze batterij is niet alleen lichter, maar ook een stuk veiliger. Dit is omdat het om een batterij gaat die na penetratie niet in thermal runaway terecht komt. Wilt u meer informatie over de smart batteries van Elfa? Neem contact met ons op.
 

Veilig werken met lithium-ion

Er is een sterk toenemend gebruik van lithium-ion batterijen. Denk onder andere aan het gebruik in powerwalls, in elektrische auto’s, intern transport en e-bike’s. De zorg over deze batterij, waar veel meer energie kan worden opgeslagen neemt sterk toe. Er wordt meer en meer over geschreven en gesproken maar werkbare informatie wordt nauwelijks verstrekt. Ook zijn er nog plekken waar gewerkt wordt met Lithium batterijen waar geen blusmiddelen aanwezig zijn die geschikt zijn om de  thermal-runaway te stoppen. Elfa biedt in nauwe samenwerking met Battery Safety Solutions oplossingen voor veilig transport, opslag en behandeling van lithium-ion batterijen.

Er is een sterk toenemend gebruik van lithium-ion batterijen. Denk onder andere aan het gebruik in powerwalls, in elektrische auto’s, intern transport en e-bike’s. De zorg over deze batterij, waar veel meer energie kan worden opgeslagen neemt sterk toe. Er wordt meer en meer over geschreven en gesproken maar werkbare informatie wordt nauwelijks verstrekt. Ook zijn er nog plekken waar gewerkt wordt met Lithium batterijen waar geen blusmiddelen aanwezig zijn die geschikt zijn om de  thermal-runaway te stoppen.

 

Het is voor organisaties en bedrijven van groot belang dat zij hun operationele medewerkers een stevige basis meegeven omtrent het veilig werken met lithium-ion batterijen. Het is tegenwoordig immers belangrijker dan ooit dat medewerkers gevaren kunnen herkennen, risico’s op de juiste manier kunnen inschatten en de juiste maatregelen kunnen nemen. Op deze manier draagt de organisatie bij aan een veilige werk omgeving voor medewerkers en bezoekers, tevens is dit de manier om de continuïteit zo hoog mogelijk te houden in geval van een calamiteit.

 

Elfa biedt in nauwe samenwerking met Battery Safety Solutions oplossingen voor veilig transport, opslag en behandeling van lithium-ion batterijen. Ons team van experts biedt kennis en oplossingen voor uw uitdagingen en levert resultaat. Oplossingen die ervoor zorgen dat werknemers kunnen excelleren en veilig kunnen werken, waaronder opleidingen op maat voor de veilige behandeling van batterijen. Elfa biedt een praktische cursus ‘Basis veilig werken met lithium-ion batterijen’ waarin aspecten van veiligheidsrisico’s worden behandeld.

 

Battery Safety Solutions is gevestigd, en werkt samen met Van Peperzeel in Lelystad. Van Peperzeel is het grootste batterij sorteer bedrijf van de Benelux. U krijgt les van de experts op het gebied van lithium-ion batterijen.

 

Naast de trainingen kunt u bij Elfa ook terecht voor de blusmiddelen van N-EXT. De N-EXT brandblusser is zeer geschikt om in te zetten bij lithium batterij branden. Het inzetten van dit blusmiddel bij lithium branden zorgt voor zeer snelle koeling, dit is de enige manier om een ‘thermal runaway’ van een lithium brand te stoppen.

 

  • Door KIWA geteste en beproefde handblusser verkrijgbaar in 3, 6, 9 en 50 liter
  • Speciaal door KIWA aanbevolen voor het blussen van lithium batterijen
  • Biologisch afbreekbaar binnen 28 dagen
  • Extreem sterk koelend effect vanwege het juist gemengde additief in de handblusser.

 

Wilt u meer informatie ontvangen over de blusmiddelen van N-EXT, of over de cursus ‘Basis veilig werken met lithium-ion batterijen’? Neem gerust contact met ons op.  

 

Nobel price for inventors Lithium ion battery

On Wednesday afternoon, the American John Goodenough (on the picture), the British Whittingham and Japanese Akira Yoshino received the Nobel Prize in Chemistry for the development of the Lithium-ion battery. The Nobel Committee stated that the three gentlemen are responsible for the "rechargeable world" and that they have tamed a reactive element. The winners receive more than €825,000,- for further scientific research.

On Wednesday afternoon, the American John Goodenough (on the picture), the British Whittingham and Japanese Akira Yoshino received the Nobel Prize in Chemistry for the development of the Lithium-ion battery. The Nobel Committee stated that the three gentlemen are responsible for the "rechargeable world" and that they have tamed a reactive element. The winners receive more than €825,000,- for further scientific research.

 

The origin of the lithium-ion battery dates from the 70s during a major oil crisis. In a search for energy sources that are independent of fossil fuels, Whittingham discovered the great electrical potential of lithium ions. He invented a battery with a potential of two volts. However, the battery turned out to be unusable due to the risk of explosion, due to the reactive nature of lithium.

 

Goodenough added two important developments to the battery. First of all, he placed the cathode (plus) of the lithium ions in a cobalt oxide environment. He also raised the potential to 4 volts. Goodenough is the oldest Nobel Prize laureate ever at the age of 97. Goodenough was awarded the National Medal of Science in 2013. This was handed out by Barack Obama at the time (see image).

 

Yoshino was responsible for the development of the first lithium battery suitable for commercial use in 1985. Yoshino replaced the anode (min) with a matrix of carbon (coke) which is a by-product from oil refining. All this resulted in a lightweight secondary (rechargeable) battery that would last countless cycles.

Alternative for the battery: hydrogen!

26 July 2019 

Elfa lives on batteries and has had over 100 year of expertise in the field of batteries. Still, it is not blind to other developments. We think that the battery for small-scale use will continue playing an important role. But where batteries will move cars, or, bigger still, supply power to houses and companies, we expect that the role of the battery will become small in the decades to come. After all, hydrogen offers a better alternative.

 

If we want to store wind and solar power for a long time, converting it into hydrogen seems to be the best option now. The green electricity splits water into an oxygen and hydrogen process through an electrolysis process. Some energy is lost, but the obvious advantage is that hydrogen gas can then be stored in tanks indefinitely. When incinerated, the energy is released again, but without CO2 in contract to the combustion of natural gas where CO2 is released. The residual product is pure water.

 

Plans are currently being elaborated for an energy island in the North Sea with a hydrogen plant that converts electricity from offshore wind farms into clean gas. Factories can use hydrogen as an energy source or as a raw material. And it can even be brought to our homes via the existing natural gas network. Cars can drive on it. And these hydrogen cars can in turn function as power plants that supply electricity to the grid at peak hours. We believe in it and meanwhile also see countless applications for the battery.

Energy agreement requires batteries

26 July 2019 

Thanks to the energy agreement, the convenience of energy from gas and coal will be behind us in the future. We will have to use energy in a completely different way. By 2030, the amount of green electricity produced from nature in the Netherlands must have quintupled. This requires hundreds of additional windmills, and millions of solar panels will be installed.

 

The downside of this type of energy is that it is only available the moment the sun shines and the wind blows. So a different approach is required. The world will work with ‘smart devices’: devices that switch on the moment enough power is available. In the same way we will charge the electric car and industry will have to work with electricity as well. In the future, the chemical plant will achieve top production on a windy

 

But it will also prove necessary to store electricity. Eneco recently built Europe’s largest battery in northern Germany. The battery is seventy meters long and has reportedly cost over 30 million euros. The wind energy that can be stored in it is just enough to supply 5,300 households with electricity once a day. This mainly proves that this solution is too expensive and extensive for the power supply.

 

Nevertheless, Elfa expects that large batteries will soon form part of the electricity network. After all, these mega batteries are useful to keep the electricity grid in balance. The frequency of the electricity grid must remain constant exactly at fifty hertz. Nowadays, gas-fired power plants can still be shut down when the wind blows hard, or out of gas on cloudy days. But in the near future those power stations will no longer exist. Batteries can then form a buffer that provides stability. Including the batteries from cars. We will soon have millions of electric cars in the Netherlands. These cars stand still more than 90% of the time. At peak times, owners can choose to return power from the car battery to the electricity grid.

How do you recognise formats of batteries?

Formats have a name and can also have a code. The names are more or less the same in all countries, though other terms may be used popularly. The codes are different everywhere, e.g. the international IEC code and the American code. Also, each brands often uses its own codes. This often makes it difficult to recognise the codes on packaging. Still, the IEC code is the most common. In the IEC code, the battery types can be recognised by the letters. For instance, Alkaline is called LR, zinc carbon batteries have an R as first letter.

IEC-code Amerik. Code Naam Volksmond Afmetingen
(L)R3 AAA Micro Mini-penlite, potlood 10,5x44,5
(L)R6 AA Mignon Penlite 14,5x50,5
(L)R14 C Baby Engelse staaf 26,2x50
(L)R20 D Mono Grote staaf, mono 34,5x61,5
6(L)R61/6F22 E 9 Volt E-blokje 26,5x17,5x48
3(L)R12 - Normal platte batterij, 4,5V 26x22x67

What does mAh mean exactly?

The capacity and thus useful life of a battery depends on the current, expressed in thousands of Ampère, or milli-Ampère (mA) multiplied by the number of hours (the h of ‘hours’) that the battery can give off power.

What does internal resistance mean for a battery?

Certain (chemical) systems can handle energy flows more easily than others. Apart from voltage (volt), the internal resistance (Ohm) of the battery is also important. Battery types with low internal resistance Nickle Cadmium, Nickle Hydride, alkaline, Lithium photo and mercuric oxide. Lithium, zinc-air, silver oxide and zinc carbon.

How does a battery work?

A battery is a cell that can pass electrical energy through internal chemical reactions. The cell consists of a plus and a minus pole separated by a layer of electrolyte. The negative pole is brought into contact with the positive pole through the device into which the battery is put, thus releasing electricity.

Does the height of the capacity determine the useful life?

Yes. The higher the capacity, the longer the battery will last. The capacity is expressed in Ampère hour (Ah) or milli-Ampère hour (mAh). In most cases, you can read on the battery itself and on the packaging how high the capacity of a battery is. So for the application equipment more capacity will generate more useful life. It is therefore not harmful to use stronger batteries, but it is harmful to use other voltages than indicated.

Sign up for our newsletter: